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Self-assembling of networks in an agent-based model

Frank Schweitzer*
Fraunhofer Institute for Autonomous Intelligent Systems, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

and Institute of Physics, Humboldt University, Invalidenstraße 110, 10115 Berlin, Germany

Benno Tilch
Institute of Physics, Humboldt University, Invalidenstraße 110, 10115 Berlin, Germany

~Received 28 April 2002; published 21 August 2002!

We propose a model to show the self-assembling of networklike structures between a set of nodes without
using preexisting positional information or long-range attraction of the nodes. The model is based on Brownian
agents that are capable of producing different local~chemical! information and respond to it in a nonlinear
manner. They solve two tasks in parallel:~i! the detection of the appropriate nodes, and~ii ! the establishment
of stable links between them. We present results of computer simulations that demonstrate the emergence of
robust network structures and investigate the connectivity of the network by means of both analytical estima-
tions and computer simulations.
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I. INTRODUCTION

The emergenceof network structures, i.e., theself-
organizedformation of links between a set of nodes is
crucial importance in many different fields. In electronic e
gineering, for instance, one is interested in theself-
assemblingand self-repairing of electronic circuits@1–3#,
while in biology models for the self-wiring ofneuronal net-
works are investigated@4,5#. On the social level, the self
organization of human trail networks between different d
tinations is a similar problem@6#. Also the establishment o
connections on demand in telecommunication or logistic
related to the problem discussed here.

A desirable feature of self-organized networks is th
adaptivity. This means that new nodes can be linked to
existing network or linked nodes can be disconnected fr
the network if this is required, e.g., by the change of so
external conditions. It is worth noting that such a behav
should not be governed by a ‘‘supervisor’’ or ‘‘dispatcher,’’
should rather result from the adaptive capabilities of the n
work itself.

Such problems become even more complicated if na
priori information about the network structure is provide
i.e., the network has to self-organize itself not only regard
the links but also regarding the nodes. This is the case,
instance, if the nodes to be linked to the network are ‘‘u
known’’ in the sense that theyfirst have to bediscoveredand
only thencan beconnected. A common biological example is
the formation of a trail system in ants to connect a nest t
set of food sources that first have to be found@7,8#. Such
networks are known to be rather flexible and adaptive. A
food sources are exhausted, they are ‘‘disconnected’’ fr
the existing network, because they are no longer visited
the respective trail is no longer maintained, but newly fou
food sources can be linked to the existing network as we
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Another important example of this kind of phenome
can be found in the self-wiring of neural structures. A neur
that grows from the retina of the eye towards the optic t
tum ~or superior colliculus! of the brain, does not ‘‘know’’
from the outset about its destination node in the brain, he
it has to navigate through an unknown environment in or
to detect and to reach the appropriate area. Neural gro
cones appear to be guided by at least four different mec
nisms: contact attraction, chemoattraction, contact repuls
and chemorepulsion@9#. These mechanisms seem to act
multaneously and in a coordinated manner to direct pathfi
ing. Once these specific pathways are established, neur
growth cones can navigate over long distances to find t
correct targets.

It is known that gradients of different chemical cues pl
a considerable role in this navigation process. They provid
kind of positional information for the navigation of the
growth cones@10#. Already in 1963 Sperry@11# proposed
that positional information might be encoded in the form
gradients of signaling molecules that could be detected
the axons. That is, axons could read positional information
every point on the tectum. It is worth noting that such
explanation assumes that the positional information resul
from the different gradients preexists in the environment
may then provide a kind of long-range attraction or repuls
for the growth cones, which act together with other sho
range mechanisms.

This points to the question that shall be answered in
paper: is it possible to link a set of nodes without usi
preexisting positional information or any kind of long-rang
attraction of the nodes? Can the process of generating p
tional information, i.e., the detection of ‘‘unknown’’ node
and the estabishment of chemical gradients,and the process
of network formation, i.e., the establishment of links b
tween nodes, occur in parallel, on a comparable time sc
as a process of coevolution?

In order to show this, in Sec. II we introduce a model
Brownian agents that are capable of producing different lo
~chemical! information and respond to it in a nonlinear ma

/
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ner. In Sec. III, this model is applied to the formation of
network between a set of nodes. We present results of c
puter simulations that demonstrate the emergence of netw
structures. In Sec. IV, we investigate the network connec
ity as a particular quantitative feature of the network
means of both analytical estimations and computer sim
tions. In Sec. V, we conclude the results and comment a
on the agent-based method used in this paper.

II. MODEL OF BROWNIAN AGENTS

The self-organization of a network is, in the consider
case, based on two different kinds ofactivities: ~i! the gen-
eration of positional information in terms of chemical grad
ents, and~ii ! the nonlinear response to the existing inform
tion in order to link the different nodes. These rath
complex processes are not performed by usual physical
ticles, therefore we have introduced the concept ofBrownian
agents@12# as a simple way to consider certain activiti
within the framework of statistical physics.

A Brownian agenti is characterized by different stat
variables that could be either external variables such a
positionr i or its velocityv i , or internal degrees of freedom.
u i , for example, is assumed to be a discrete valued par
eter that allows to describe different responses of agenti to
external signals, or different changes of its environment.
cause all kind of activities need energy, the agent’s ene
depotei is another important internal degree of freedom@13#.
These state variables may change in the course of time
ther or both by deterministic and stochastic influences. Si
lar to the description of Brownian motion, we will use
generalized Langevin equation for the Brownian ag
~which also justifies its denotation!. For the change of the
agent’s position we may assume an overdamped Lang
equation,

dr i

dt
5a i

]he~r,t !

]r
uri ,u i

1A2« ij i~ t !. ~1!

The second term denotes the stochastic influences, w
j i(t) is white noise with ^j i(t)&50 and ^j i(t)j j (t8)&
5d i j d(t2t8). The strength of the stochastic force« i could
be in general an individual parameter to weight the stocha
influences, this way it can for example measure the in
vidual sensitivityv i}1/« i of the agent. The first term denote
the deterministic influences that are in the considered c
assumed to result from thegradient of an effective field
he(r,t). This field contains the positional information pro
vided by different chemical cues as specified below. The
rametera i describes the strength of the individual respon
of the agent to the field and weights the deterministic infl
ences.a i can be used to describe different responses to
field.

~i! Attraction to the field,a i.0, or repulsion,a i,0.
~ii ! Response only if the local value of the field is above

certain thresholdh0 : a i5Q@he(r,t)2h0#, with Q@y# being
the Heavyside function;Q51, if y.0, otherwiseQ50.

~iii ! Response only if the agent has a specific inter
valueu: a i5du i ,u .
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Throughout this paper, we assume the two individual
rameters as constants:a i[a51 and« i5Dn whereDn is the
spatial diffusion coefficient, but we want to mention that t
idea of an adjustable sensitivity has been successfully
plied to model search problems with Brownian agents@8,14#.

In addition to the movement of the Brownian agents, i.
changes of their state variablesr i , we also have to conside
changes of their internal degree of freedomu i(t) that in this
application should have one of the following values:u i
P$0,21,11%. Initially, u i(t0)50 holds for every agent. The
parameteru i can be changed in the course of time by
interaction between the moving agents and the nodes. T
specific, we consider a two-dimensional surface, wher
number of j 51, . . . ,z nodes are located at the positionsr j

z

~cf. Fig. 1!. A number ofz1 nodes should be characterize
by a positive potential,Vj511, while z25z2z1 nodes
have a negative potential,Vj521. We note explicitly that
the nodes donot have anylong-range effecton the agents,
such as attraction or repulsion. Their effect is restricted
their location,r j

z .
It is the ~twofold! task of the Brownian agents, first t

discoverthe nodes and then tolink nodes with an opposite
potential, this way forming a self-organized network betwe
the set of nodes. If an agent hits one of the nodes, its inte
degree of freedom is changed according to the follow
equation:

Du i~ t !5E
A
(
j 51

z

~Vj2u i !
1

A
d„r j

z2r i~ t !…dr. ~2!

The d function is equal to 1 only forr j
z5r i and zero other-

wise. So, Eq.~2! indicates, that an agent changes its inter
state,u i , only if it hits one of the nodes. Then it takes ov
the value of the potential of the respective node,Vj , which
meansu i remains constant ifVj5u i , and u i→Vj , if Vj
Þu i . We note that the probability for a~pointlike! agent to
hit a ~pointlike! node is almost vanishing. However, the com

FIG. 1. Example of a regular distribution of 40 nodes on
lattice of sizeA51003100. For the computer simulations, period
boundary conditions have been used.z1520, z2520. $3% indi-
cates nodes with a potentialVj521, $1% indicates nodes with a
potentialVj511.
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SELF-ASSEMBLING OF NETWORKS IN AN AGENT- . . . PHYSICAL REVIEW E 66, 026113 ~2002!
puter simulations discussed in the following section are c
ried out on a discrete lattice, so the agent and the node
have a finite extension, in which case Eq.~2! makes sense.

If the Brownian agent hits one of the nodes, this imp
may result in an active state of the agent—akick, originated
by the potential, which may change the internal parame
u i , due to Eq.~2!. In the active state, it is assumed that t
agent is able to produce a chemical, either compon
(21) or (11), in dependence on the actual value of t
internal parameter. We note that the agent’s ability to p
duce the chemical in general depends on another inte
parameter, namely, the internal energy depot that may
limits to the agent’s activities. In this model, however, it
assumed that the internal energy depot is always sufficie
balanced, thus its influence shall be neglected here.
agent’s chemical production rate,si(u i ,t), is assumed as fol
lows:

si~u i ,t !5
u i

2
@~11u i !s11

0 exp$2b11~ t2tn1
i !%

2~12u i !s21
0 exp$2b21~ t2tn2

i !%#. ~3!

Equation~3! means that the agent is not active, as long
u i50, which means before it hits one of the nodes the fi
time. After that event, the agent begins to produce eit
component (11) if u i511, or component (21) if u i
521. This activity, however, goes down with time, e
pressed in an exponential decrease of the production
Here,s11

0 , s21
0 are the initial production rates andb11 , b21

are the decay parameters for the production of the chem
components (11) or (21). Respectively,tn1

i , tn2
i are the

times, when the agenti hits either a node with a positive or
negative potential.

The spatiotemporal concentration of the chemicals s
be described by achemical field hu(r,t) consisting either of
component (11) or (21), which obeys the following equa
tion:

]hu~r,t !

]t
52kuhu~r,t !1(

i 51

N

si~u i ,t !du;u i
d„r2r i~ t !….

~4!

The first term describes the exponential decay of the exis
concentration due to spontaneous decomposition of
chemical, whereku is the decomposition rate. The seco
term denotes the production of the field by the agents. H
du;u i

means the Kronecker delta used for discrete variab
indicating that the agents only contribute to the field com
nent that matches their internal parameteru i . Thed function
d„r2r i(t)… means that the agents contribute to the field o
locally, at their current position,r i . Diffusion of the chemi-
cal substances is not considered here.

The effectivefield, he(r,t), is a specific function of the
different components of the field, Eq.~4!. It should influence
the movement of the agents according to the overdam
Langevin Eq.~1! and dependent on their current internal p
rameter,u i , as follows:
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]he~r,t !

]r
5

u i

2 F ~11u i !
]h21~r,t !

]r
2~12u i !

]h11~r,t !

]r G .
~5!

Equation~6! summarizes the nonlinear feedback between
field and the agents, as given by Eqs.~3!, ~4!, and~5!,

u i “ ih
e~r,t ! si~u i ,t !

0 0 0

11 “ ih21~r,t ! si~11,t !

21 “ ih11~r,t ! si~21,t !. ~6!

Before presenting computer simulations, we would like
summarize our model of network formation that is intr
duced here in terms of anagent-basedapproach. Each agen
is active in the sense that it can~i! move,~ii ! produce locally
one out of two different chemical cues, and~iii ! respond to
local gradients of these different chemicals. The actions
all agents are coupled indirectly via an effective field th
comprises two different chemical components. The agent
tivities further depend on an internal parameteru i that allows
to describe a different ‘‘behavior.’’ Our model assumes th
agents with an internal stateu i50 do not contribute to the
field and are not affected by the field. They simply move li
Brownian particles. Agents with an internal stateu i511
contribute to the field by producing the chemical cue (11),
while they are affected by the part of the field that is det
mined by chemical (21). On the other hand, agents with a
internal stateu i521 contribute to the field by producing
chemical (21) and are affected by the part of the fiel
which is determined by component (11). Moreover, if the
agent hits one of the nodes, the internal state can be switc
due to Eq.~2!. Hence, the agent begins to produce a differ
chemical while being affected by the opposite potential. P
cisely, at one time the agent doesnot respond to the gradien
of the same field component, which it contributes to via p
ducing a chemical.

As the result of this nonlinear feedback between
Brownian agents and the effective field generated by th
we can observe the formation of macroscopic structu
shown in the following section.

III. SIMULATION RESULTS OF NETWORK FORMATION

For the computer simulations, a triangular lattice with p
riodic boundary conditions was used. Further, we have
sumed that the parameters describing the production and
cay of the chemical are the same for both components,

s11
0 5s21

0 5s0 , k115k215kh , b115b215b. ~7!

The agents start initially at random positions and with t
internal parameteru i(t50)50. For the evolution of the net
work, we evaluate the sumĥ(r,t) of the two field compo-
nents generated by the agents. For the plots, however
have to match these values with agray scaleof 256 values,
which is defined as follows:
3-3
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c~r,t !5255F12 log10S 119
ĥ~r,t !2ĥmin~ t !

ĥmax~ t !2ĥmin~ t !
D G ,

ĥ~r,t !5h11~r,t !1h21~r,t !. ~8!

This means that the highest actual value,ĥmax(t), always
refers toblack (c50), whereas the actual minimum valu
ĥmin(t) encodes white (c5255). Both extreme value
change in course of time, therefore each snapshot of the
series presented has its own value mapping.

As a first example, we show the evolution of the conn
tions among four nodes~Fig. 2!. In the course of time agent
that have by chance discovered a node~this way going over
into an active state! begin to perform adirected motionbe-
tween the different nodes. Eventually, a link appears wh
can be clearly distinguished from the surrounding.

Figure 2 would suggest that in the course of time
nodes with an opposite potential should be connected. T
however, is not the case because the existing connec
cause ascreening effectthat forces the agents to move alon
existing connections rather than making up new ones. T
screening effect becomes more obvious when the numbe
nodes is increased. Figure 3 shows the time evolution o
network, which should connect 40 nodes~cf. Fig. 1!. We see
@29# that in the course of time the agents aggregate along
connections, which results in higher agent concentrati

FIG. 2. Formation of links among four nodes. The plots sh
the spatial concentrationc(r,t), Eq. ~8! on a lattice of sizeA530
330 for four different times:~a! initial state,~b! after 100 simula-
tion steps,~c! after 1000 simulation steps,~d! after 4500 simulation
steps. Parameters:N5450 agents,s0525 000, kh50.01, b50.2,
kh50.01.
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and in higher fields along the connections. The se
assembling network is created very fast and remains stab
the long run.

The time series of Fig. 3 indicates that for the formati
of the network atransient stageexists, during which new
nodes are discovered and new connections appear. Afte
transient timet tr , however, the existing links are only stab
lized, with small possible fluctuations. In order to get
estimate of the transient time, we have evaluated the t
fraction xu(t)5Nu(t)/N of agents that currently have th
internal parameteru. The result shown in Fig. 4 is based o
the simulations of Fig. 3. It indicates that aftert'1500 simu-
lation steps every agent has found at least one node
chance, thus changing its internal parameter either to (11)
or to (21). Further, after this time the share between th
internal parameters is almost equally balanced, with sli
fluctuations aroundxu50.5, dependent on the actual positio
of the agents.

FIG. 3. Time series of the evolution of a network. The plo
show the spatial concentrationc(r,t), Eq. ~8! on a lattice of size
A51003100 for different times~in simulation steps!. The initial
state is shown in Fig. 1. Parameters:N55000 agents,s0510 000,
kh50.03, b50.2.
3-4
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In Ref. @15#, we have shown that the equations forxu(t)
for the ensemble average read explicitly

x0~ t !5expH 2Dn

z11z2

A
tJ , ~9!

xu~ t !5
zu

z11z2
S 12expH 2Dn

z11z2

A
tJ D ,

uP$21,11%.

In the asymptotic limit, the fractionxu is determined by the
appropriate number of nodes, which change the internal s
of the agents intou. The transient timet tr can be estimated
by assuming that the difference betweenxu(t) and the sta-
tionary valuexu

stat should be smaller than a certain value,k,

t tr>
A

Dnz
lnS 1

k D . ~10!

For Dn51, we find for k51022 a transient time oft tr
51150, and fork51023 t tr51700, which is in good agree
ment with the results of the computer simulations. After th
time, the assembled network should remain almost stabl

Patterns like the network shown are intrinsically det
mined by the history of their creation. It means that irreve
ibility and early symmetry breaking play a considerable r
in the determination of the final structure. The location of t
different nodes acts more or less as a boundary condition
the structure formation which sets limits to the achieva
structures, but does not determine the way of connecting
different nodes.

Despite the fact that in Fig. 3 almost all nodes are c
nected by at least one link, only some out of all possi
connections have been realized. In particular, only nea
neighbor nodes with opposite potentials are connected.
is partly due to the screening effect that makes longer c
nections an unlikely event, but also indicates that, betw

FIG. 4. Fractionxu of agents with the internal parameteru
vs time ~in simulation steps!. (s), u50; (L), u511; (h), u
521. The values are obtained from the simulation, Fig. 3. Ini
conditions:x051, x6150.
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two nodes, a maximum distanceL! exists which agents are
able to connect. An approximation for this critical distance
given in Ref.@16#.

Eventually, we note that the network formation is not r
stricted to regular or symmetric distributions of nodes. F
ure 5 shows a simulation where different nodes are c
nected with a center.

In Ref. @8# we have also discussed a different variant
the model to demonstrate its flexibility in connecting ad
tional nodes to the network, or disconnecting obsolete on
Further, in Ref.@16# we have shown that the switching be
havior between a connected and a disconneced state ca
very short, which would allow the construction of a dynam
switch.

IV. ESTIMATION OF THE NETWORK CONNECTIVITY

A. Definition of connectivity

In order to characterize a network, one of the most imp
tant questions is whether two nodesk and l are connected or
not. In the model considered, a connection is defined
terms of the chemical fieldĥ(r,t) produced by the agents
During the first stage of the network formation, the age
have randomly visited almost every lattice site before th
motion turned into a bound motion between the nod
Therefore, the fieldĥ(r,t) has a nonzero value for almos
every r, which exponentially decays, but never vanish
Hence, in order todefine a connectionin terms ofĥ(r,t), we
have to introduce athreshold value hthr , which is the mini-
mum value considered for a link. More precisely, aconnec-
tion between two nodesk andl should only exist if there is a
pathaPA betweenk and l along which the actual value o
the field is larger than the threshold value,

ĥ~a,t !.hthr for aPA. ~11!

Such a definition does not necessarily assume that the
nection has to be adirect link. Instead, it could be any patha,

l

FIG. 5. Formation of links between a center (z251) and sur-
rounding nodes (z157). The plot shows the spatial concentratio
c(r,t), Eq. ~8! on a lattice of sizeA550350 aftert510 000 simu-
lation steps. Parameters:N52000 agents,s0520 000, kh50.02,
b50.2.
3-5
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which may also include other nodes, as long as the va
ĥ(a,t) along the path is above the threshold.

We want to define thelocal connectivity Elk as follows:

Elk5H 1 if k and l are connected by a pathaPA

along which ĥ~a,t !.hthr

0 otherwise.
~12!

We note that the connectivityElk does not change if two
nodesk and l are connected by more than one path.

If we consider a number ofz nodes, then theglobal con-
nectivity E that refers to the whole network is defined
follows:

E5

(
k51

z

(
l .k

z

Elk

(
k51

z

(
l .k

z

1

5
2

z~z21! (
k51

z

(
l .k

z

Elk . ~13!

Depending on the configuration of nodes, there may be
merous different realizations for the connections, which
sult in the same connectivityE.

B. Estimation of the threshold value

In order to use the definition for the connectivity to eva
ate the simulated networks, we first have to define the thre
old valuehthr . This should be theminimum valueof ĥ(r,t)
along astable connectionbetween two nodes. For our est
mations, we treat the connection between two nearest ne
bor nodesk and l as aone-dimensionalstructure, wherex is
now the space coordinate, andL the linear distance betwee
the two nodesk and l. The node atx50 should have a
positive potentialV511, while the node atx5L has a
negative potentialV521,

0<x<L, V~0!511, V~L !521. ~14!

We assume that a stable connection exists if both field c
ponentshu(x,t) have reached their stationary values,

]hu~x,t !

]t
52kuhu~x,t !1(

i
si~u,t !d~x2xi !50. ~15!

Of course, we do not know how many agents are actually
the connection betweenk andl. For our estimations we hav
to bear in mind thaththr should determine thelower limit of
the possible values ofĥ, therefore it is justified to assume th
worst case, which means that the local number of agents
specific location is just given by theaverage agent densit

n̄5N/A, where N is the total agent number andA is the
surface size. Further, we found in the computer simulati
~cf. Fig. 4!, that in the long-time limit the agents are equa
distributed between the two internal states,uP$11,21%.
Hence, we assume that on any location along the connec
there arenu5n̄/2 agents in stateu. Using this lower limit for
02611
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the agent number, thed function in Eq.~15! can be replaced
by n̄/25N/2A in the continuous limit.

Further, we consider that the agents move along thx
coordinate with a constant velocity~which also matches with
the assumptionv̇'0 of the overdamped Langevin equation!,

v5uvu5
uxu
t

, 0<x<L. ~16!

This allows us to replacet in the time dependent productio
rate,si(u,t). With these simplified assumptions and the co
ventions of Eq.~7!, Eq. ~15! reads for componentu511,

]h11~x,t !

]t
52khh11~x,t !1

n̄

2
s0 expH 2b

x

vJ . ~17!

Integration of Eq.~17! yields with h11(x,t50)50,

h11~x,t !5
n̄

2

s0

kh
expH 2b

x

vJ ~12exp$2kh t%!. ~18!

Eventually, for t→` we find from Eq.~18! the stationary
solution

h11~x!5
n̄

2

s0

kh
expH 2

b

v
xJ . ~19!

The remaining field componenth21(x8,t) should have the
same stationary solution as Eq.~19!, with x85L2x. The
resulting total fieldĥ(x,t) reads in the stationary limit~cf.
Fig. 6!

ĥ~x!5h11~x!1h21~L2x!

5
n̄

2

s0

kh
FexpH 2

b

v
xJ 1expH 2

b

v
~L2x!J G ,

~20!

0<x<L.

FIG. 6. Stationary solutions forh11(x), Eq. ~19! (•••), h21(x)

(22), and ĥ(x), Eq. ~20! ( ) vs spatial coordinatex. h(x) is
measured in units of@s0# per length and time unit.L5Lmax/2, Eq.

~24!. The thresholdhthr is defined as the minimum value ofĥ(r,t)
in the stationary limit. For the parameters see Fig. 3.
3-6
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The thresholdhthr should be defined as the minimum
ĥ(x), which yields forL/2. As the result, we find

hthr5ĥS L

2D5
N

A

s0

kh
expH 2

b

v
L

2J . ~21!

Here, the threshold value is a function of the mean ag
density n̄, the parameterss0 , kh , and b, and the distance
between the two nodes,L. However, due to the decay of th
field (kh) and the decreasing production rate with time (b),
the agents are only able to link nodes that are at a dista
closer than a critical distanceL!, i.e., Eq.~21! makes sense
only for L,L!.

In order to get an estimation forL!, we assume that a
minimum production ratesmin exists, which is in the given
model the smallest possible amount of chemical release
the agent~naturally, it could be a molecule, ifs is measured
in molecule numbers!. With t0 being the time when the agen
hits the node, we get from

smin5s0 exp$2b~ t2t0!% ~22!

the maximum timetmax after which the production isnegli-
gible,

tmax5
1

b
lnH s0

smin
J . ~23!

We can now discuss the case that the agent moves str
with a constant velocity, without changing its direction. Th
the maximum distance crossed before the contribution to
field is negligible would be

Lmax5v tmax5
v
b

lnH s0

smin
J . ~24!

On the contrary, if we assume that the agent moves lik
random walker, the average distance reached aftert simula-
tion steps, is given by the mean displacement,DR
5A2d Dnt, which yields ford52,

Lav5A2 Dntmax5A2 Dn

b
lnH s0

smin
J . ~25!

The real maximum distance that can be connected by
agent in the considered model is of course between th
limits. We have found@16# that Lmax/2 is a reasonable est
mate forL!,

A2Dn

v
Lmax,L!'

Lmax

2
,Lmax. ~26!

Using this approximation, we find with Eq.~21! and Eq.~24!
eventually the estimate for the threshold,

hthr5
N

A

s0

kh
S smin

s0
D 1/4

. ~27!

Provided the set of parameters used for the simulations
find for the threshold the valuehthr51.73104, which is ap-
02611
nt

ce

by

ght

e

a

ne
se

e

proximatelyhthr'2s0. We note again that this is an estima
that might give a rather high value because of the assu
worst case conditions. On the other hand, it ensures that
ues for ĥ(a,t) above the thresholdreally represent astable
connectiona.

C. Results of computer simulations

After these theoretical considerations, we are now able
calculate the connectivityE, Eq. ~13!, for the network simu-
lated in Fig. 3. Figure 7 shows the increase of the connec
ity in the course of time. In agreement with the visible ev
lution of the network presented in Fig. 3, the following thr
different stages can be clearly distinguished.

~1! An initial period (t,102), where no connections ye
exist.

~2! A transientperiod (102,t,104), where the network
establishes.

~3! A saturationperiod (t.104), where almost all nodes
are connected, and only small fluctuations in the connecti
occur.

Figure 7 results from the single realization of the netwo
shown in Fig. 3, in the average we find certain fluctuations
the connectivity due to stochastic influences that affect
formation of the network during the transient period. Th
leads us to the question: on what parameters the connect
of the network depends? There are of course the param
affecting the production and decay of the two differe
chemical cues,s0 /kh , b, and thus the positional informatio
available to the agents. Another important parameter is
average agent densityn̄5N/A. If it is too low, the links will
not be established properly, either because not all nodes
been detected during the transient period or because ther
not enough agents to maintain the links sufficiently. Figur
shows the average connectivity^E& dependent on the densit
of agents,n̄.

Here, we clearly see that below a critical density the co
nectivity is almost zero because not enough agents are a
able to establish the connections. On the other hand, abo
certain density the connectivity reaches a saturation va
that could be also below 1, as Fig. 8 shows. Hence, at
point an increase of the number of agents does not nece

FIG. 7. Network connectivityE Eq. ~13! vs timet ~in simulation
steps!, calculated from the series of Fig. 3.
3-7
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ily result in the establishment of more links. This is caus
by thescreening effectalready mentioned in Sec. III, whic
eventually concentrates all agents to move along the es
lished links.

A third important impact on the establishment of the n
work results from parameter relation betweena i and « i
which influence the agent’s motion according to Eq.~1!. If
both the response to the field,a i , and the sensitivityv i
}1/« i are low, the agent nearly behaves as a random part
On the other hand, a strong response or a high sensit
may result in a decrease of stochastic influences, and
agent pays more attention to the effective field that guides
motion. This in turn increases the screening effect and m
prevent the agent from discovering unknown nodes, thus
can expect an optimal range of these parameters for an
cient network formation. This has been investigated in m
detail in a subsequent paper@15#.

V. CONCLUSIONS

In this paper, we have proposed an agent-based mode
shows theself-assemblingof networklike structures betwee
arbitrary nodes. Different from network models that st
with the assumtion of a known set of nodes to be linked i
straightforward manner, we have addressed in our mode
question of how to connect a set of nodeswithoutusing prior
information about their spatial locations or preexisting lon
range attraction forces. This would need to solve two pr
lems simultaneously:~i! the detection of the appropriat
nodes, and~ii ! the establishment of one~or many! stable
links between them.

As we have noted in the Introduction, this is a scienti
problem of relevance in different areas, including the em
gence of neural connections. In the latter case, positio
information in terms of chemical gradients plays an imp
tant role in guiding the neural axons to their destinations
our model, we have assumed that the positional informa
about the existence of the nodes does not preexist, bu
generated ‘‘on the fly’’ by means of Brownian agents wh
they are moving on the surface. Due to the nonlinear fe
back between the detected positional information and
creation of new links, we find the emergence of links b

FIG. 8. Network connectivitŷ E& Eq. ~13!, averaged over five

simulations vs mean density of agents,n̄ ~number of agents pe
lattice size,N/A). For further parameters see Fig. 3.
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tween different nodes, along which the Brownian agents p
form a directed motion—in this way reinforcing and ‘‘main
taining’’ the links.

Different from acircuitry for instance, for which the links
between the nodes are determined in atop-downapproach of
hierarchical planning, the connections here are created by
agentsbottom up, in a process of self-organization. As th
computer simulations have shown, the model turns out to
very flexible regarding the geometry of the nodes to be c
nected. Further, the networks created this way are rathero-
bust against disturbances. If, for example, a particular li
breaks down, the agents would be able torepair it by rees-
tablishing the field, or by creating a new one.

The basic feedback mechanism in our model is given
the agent’s generation of~two! different kinds of chemical
information and the agent’s response to gradients of th
chemicals dependent on their internal state. This is a
known aschemotaxis, i.e., the response to~gradients of!
chemical substances and is widely found in different lev
of biological organization. However, different from othe
self-wiring models@4,5# we have not assumed that these su
stances due to their diffusion may have a long-range ef
on the moving agents, or may generate attractiveand repul-
sive forces. In our model, the chemical information acts o
locally. It is stored in an effective field that is sometimes a
denoted as aself-consistent field, because it is generated b
the agents and at the same time also influences their fur
behavior. From a more general perspective, the effective fi
plays the role of a communication medium among t
agents, i.e., it stores information~external to the agents! for a
certain time~determined by the decay ratekh) and allows
access to it under certain conditions—for instance, in
current model an agent can only access information that
its current position and is labeled differently from the val
of the agent’s internal parameter. But the agents do not
respond to the information provided in a purely reacti
manner, they also actively change it dependent on their
ternal parameter.

The Brownian agent concept has proven its utility in
number of applications where~positive and negative! local
feedback processes play a considerable role, but an inte
evolutionof the agents can be neglected@12#. The concept
does not deny its inspiration from statistical physics, usi
e.g., generalized Langevin equations for the agents
reaction-diffusion equations for the effective field. Moreov
it purposefully stretches these analogies, in order to ap
methods from statistical physics to derive pieces for a form
approach tomultiagent systems~MAS!. This should also in-
clude the derivation of a macroscopic dynamics of the M
based on the agents’~microscopic! dynamics, to allow some
predictions of the collective behavior and the derivation
critical parameters, etc.

On the first glimpse, agent-based approaches seem t
outside the realms of physics. Therefore, at the end we wo
like to comment on this. First of all, ‘‘agent’’ or particle
based models are also useful in physics if continuous
proximations are not appropriate, for example, in ca
where only small particle numbers govern the process~e.g.,
in dielectrical breakdown or filamentary pattern formation!.
3-8
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Here deterministic approaches or mean-field equations
not sufficient to describe the behavior of the system, beca
the influence of history, i.e., stochastic fluctuations, ea
symmetry breaks, path dependence, etc., play a conside
role—which can be appropriately captured in particle-ba
models. Moreover, these models also provide a very effic
way to simulate structure formation processes by solvin
large number of coupled ‘‘particle’’ equations~such as
Langevin equations! instead of integrating a complicated s
of coupled partial differential equations@17,18#.

In many interdisciplinary applications physics nowada
deals with, for example, in biological physics or econoph
ics, the basic system entities do not just respond to inte
tion forces, but also perform certain types of activities, su
as active motion or changes of the ‘‘environment’’ and fu
ther have internal degrees of freedom that allow them to
differently. Therefore, the ‘‘physical’’ particle-based a
proach has been extended towards anagent-based approach,
where the agents already have an intermediate complexi
allow for certain nontrivial actions or responses. In t
model discussed in this paper, the generation of two differ
chemical cues and the complex response to them are jus
examples for such an extension. In addition to the Brown
02611
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agent model, other agent-based approaches have been d
oped based on physical principles, which focus on particu
aspects of the complex agent behavior. We just mention h
active walker models@6,19–22#, where a potential can be
locally changed by the walker, oractive Brownian particles
@14,18# that deal also with the energetic aspects of act
motion. With respect to specific biological phenomena, th
is the communicating walker modelused in the study of
complex patterning of bacterial colonies@23#, or the bions
modelused in the study of amebae aggregation@24#, or the
many models of self-driven particles to describe swarm
behavior@25–28#. They jointly demonstrate that agent-bas
models can indeed profit from the methodology and the to
derived in statistical physics.
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