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Self-assembling of networks in an agent-based model
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We propose a model to show the self-assembling of networklike structures between a set of nodes without
using preexisting positional information or long-range attraction of the nodes. The model is based on Brownian
agents that are capable of producing different Igchlemical information and respond to it in a nonlinear
manner. They solve two tasks in parall@): the detection of the appropriate nodes, @indthe establishment
of stable links between them. We present results of computer simulations that demonstrate the emergence of
robust network structures and investigate the connectivity of the network by means of both analytical estima-
tions and computer simulations.
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I. INTRODUCTION Another important example of this kind of phenomena
can be found in the self-wiring of neural structures. A neuron
The emergenceof network structures, i.e., theelf- that grows from the retina of the eye towards the optic tec-
organizedformation of links between a set of nodes is of tum (or superior colliculus of the brain, does not “know”
crucial importance in many different fields. In electronic en-from the outset about its destination node in the brain, hence
gineering, for instance, one is interested in tkelf- it has to navigate through an unknown environment in order
assemblingand self-repairing of electronic circuits[1-3],  to detect and to reach the appropriate area. Neural growth
while in biology models for the self-wiring afieuronal net- cones appear to be guided by at least four different mecha-
works are investigated4,5]. On the social level, the self- nisms: contact attraction, chemoattraction, contact repulsion,
organization of human trail networks between different desand chemorepulsiof8]. These mechanisms seem to act si-
tinations is a similar problerf6]. Also the establishment of multaneously and in a coordinated manner to direct pathfind-
connections on demand in telecommunication or logistics isng. Once these specific pathways are established, neuronal
related to the problem discussed here. growth cones can navigate over long distances to find their
A desirable feature of self-organized networks is theircorrect targets.
adaptivity This means that new nodes can be linked to the It is known that gradients of different chemical cues play
existing network or linked nodes can be disconnected frona considerable role in this navigation process. They provide a
the network if this is required, e.g., by the change of someind of positional informationfor the navigation of the
external conditions. It is worth noting that such a behaviorgrowth coneg10]. Already in 1963 Sperry11] proposed
should not be governed by a “supervisor” or “dispatcher,” it that positional information might be encoded in the form of
should rather result from the adaptive capabilities of the netgradients of signaling molecules that could be detected by
work itself. the axons. That is, axons could read positional information at
Such problems become even more complicated ifano every point on the tectum. It is worth noting that such an
priori information about the network structure is provided, explanation assumes that the positional information resulting
i.e., the network has to self-organize itself not only regardingrom the different gradients preexists in the environment. It
the links but also regarding the nodes. This is the case, famay then provide a kind of long-range attraction or repulsion
instance, if the nodes to be linked to the network are “un-for the growth cones, which act together with other short-
known” in the sense that thefyrst have to beliscoverecand  range mechanisms.
only thencan beconnectedA common biological example is This points to the question that shall be answered in this
the formation of a trail system in ants to connect a nest to @aper: is it possible to link a set of nodes without using
set of food sources that first have to be foU@8]. Such  preexisting positional information or any kind of long-range
networks are known to be rather flexible and adaptive. Aftemttraction of the nodes? Can the process of generating posi-
food sources are exhausted, they are “disconnected” frontional information, i.e., the detection of “unknown” nodes
the existing network, because they are no longer visited andnd the estabishment of chemical gradieats] the process
the respective trail is no longer maintained, but newly foundof network formation, i.e., the establishment of links be-
food sources can be linked to the existing network as well.tween nodes, occur in parallel, on a comparable time scale,
as a process of coevolution?
In order to show this, in Sec. Il we introduce a model of
*Electronic address: schweitzer@ais.fhg.de; URL: http://Brownian agents that are capable of producing different local
www.ais.fhg.de/~frank/ (chemica) information and respond to it in a nonlinear man-
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ner. In Sec. lll, this model is applied to the formation of a k x x x x
network between a set of nodes. We present results of com-

puter simulations that demonstrate the emergence of network * * * * *
structures. In Sec. IV, we investigate the network connectiv-

ity as a particular quantitative feature of the network by o * * * *

means of both analytical estimations and computer simula-

. * * * * *
tions. In Sec. V, we conclude the results and comment also
on the agent-based method used in this paper. A 5 5 " %
Il. MODEL OF BROWNIAN AGENTS . * * - -
The self-organization of a network is, in the considered 3 x x x x
case, based on two different kinds adtivities (i) the gen-
eration of positional information in terms of chemical gradi- * * * * *

ents, andii) the nonlinear response to the existing informa-
tion in order to link the different nodes. These rather o
complex processes are not performed by usual physical par- FIG- 1. Example of a regular distribution of 40 nodes on a
ticles, therefore we have introduced the concefBafwnian lattice of sizeA=100x 100. For the computer simulations, periodic
agents[12] as a simple way to consider certain activities °0undary conditions have been used=20, z_=20. {X} indi-
within the framework of statistical physics. cates nodes with a potentisli=—1, {+} indicates nodes with a

A Brownian agenti is characterized by different state potentialV;=+1.
variables that could be either external variables such as its Throughout this paper, we assume the two individual pa-

positionr; or its velocitywv;, or internal degrees of freedam rameters as constanig= a—1 ande. = D.. whereD.. is the
) i i = = G i—“Yn n
0, for example, is ass“!“ed _to be a discrete valueq paramspatiad diffusion coefficient, but we want to mention that the
eter that allows to describe different responses of agémt : o i
. . ! . idea of an adjustable sensitivity has been successfully ap
external signals, or different changes of its environment. Be- lied to model search problems with Brownian agé8a4]
cause all kind of activities need energy, the agent'’s energ{/3 P 9 '

. : . In addition to the movement of the Brownian agents, i.e.,
depote; is another important internal degree of freeddrl]. X . ;
. . . changes of their state variables we also have to consider
These state variables may change in the course of time, € anaes of their internal dearee of freedertt) that in this
ther or both by deterministic and stochastic influences. Simi- g 9

. : : : application should have one of the following values:
lar to the description of Brownian motion, we will use a = " n
generalized Langevin equation for the Brownian agente{o’ 1t’+61}'|mt'z”y’ gi(t")_do. hc;lr:js for everyfa?ent.t'l)'he
(which also justifies its denotatipnFor the change of the parameterg; can be changed in the course of ime by an

agent's position we may assume an overdamped Langevi'ﬁ'ter"?‘(.:tlon betwee_n the moving agents and the nodes. To be
specific, we consider a two-dimensional surface, where a

tion, . .
equation number ofj=1, ... z nodes are located at the posmonfrs
) e (cf. Fig. 7). A number ofz, nodes should be characterized
dr; dh®(r,t) - : .
a:aiThi'aiJr V2g,&(1). (1) by a positive potentialV;=+1, while z_=z—-z, nodes

have a negative potential/;=—1. We note explicitly that
the nodes daot have anylong-range effecbn the agents,
Kich as attraction or repulsion. Their effect is restricted to
their location,r{.

The second term denotes the stochastic influences, whe
&(t) is white noise with (&(t))=0 and (&(t)¢;(t"))
= §j6(t—t"). The strength of the stochastic forege could

) o . . It is the (twofold) task of the Brownian agents, first to
be in general an individual parameter to weight the stochastic. X . :
. . . .~ .discoverthe nodes and then fink nodes with an opposite
influences, this way it can for example measure the indi-

vidual sensitivityw; < 1/¢; of the agent. The first term denotes potential, this way forming a S?” organized network' bgtween
L ! . the set of nodes. If an agent hits one of the nodes, its internal
the deterministic influences that are in the considered cas . X .
) X . egree of freedom is changed according to the following
assumed to result from thgradient of an effective field

hé(r,t). This field contains the positional information pro- equation:

vided by different chemical cues as specified below. The pa- z 1

rametera; describes the strength of the individual response Aei(t):f > (V= 0)=8(r*—r,(t))dr. 2)

of the agent to the field and weights the deterministic influ- AT AT

ences.a; can be used to describe different responses to the

field. The ¢ function is equal to 1 only forjz=ri and zero other-
(i) Attraction to the field,a;>0, or repulsion;<0. wise. So, Eq(2) indicates, that an agent changes its internal
(i) Response only if the local value of the field is above astate,d;, only if it hits one of the nodes. Then it takes over

certain thresholdhy: a;=0O[h®(r,t) —ho], with ©[y] being  the value of the potential of the respective nodge, which

the Heavyside function® =1, if y>0, otherwise® =0. means#; remains constant i/;=6;, and 6,—V;, if V;
(i) Response only if the agent has a specific internak: ;. We note that the probability for @ointlike) agent to
value 6: a;= B4, .6 hit a (pointlike) node is almost vanishing. However, the com-
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puter simulations discussed in the following section are car- ghé(r,t) 6, h_4(r,t) ah,(r,t)
ried out on a discrete lattice, so the agent and the node both — — =7 (1+ 6i)T_(1_ 0i)T .
have a finite extension, in which case Eg) makes sense. (5)

If the Brownian agent hits one of the nodes, this impact
may result in an active state of the agentkiak, originated  gq,ation(6) summarizes the nonlinear feedback between the

by the potential, which may change the internal parametelyo|4 and the agents. as given by E 4) and(5
6;, due to Eq.(2). In the active state, it is assumed that the gents, as g y E@S. ) ©)

agent is able to produce a chemical, either component 6. Vhe(rt)  s(6.1)
(=1) or (+1), in dependence on the actual value of the ! v nor
internal parameter. We note that the agent's ability to pro- 0 0 0
duce the chemical in general depends on another internal +1 Vih_y(r,t) s(+1t)

parameter, namely, the internal energy depot that may set
limits to the agent’s activities. In this model, however, it is

assumed that the internal energy depot is always sufficient! . . . )
balanced, thus its influence shall be neglected here. Thaefore presenting computer simulations, we would like to

agent's chemical production ra( 6, ,t), is assumed as fol- summarize our model of network formation that is intro-
lows: duced here in terms of aagent-base@pproach. Each agent

is active in the sense that it c&in move, (ii) produce locally
6 one out of two different chemical cues, afiil) respond to
si(6;,t)= 5'[(1+ Gi)SileXp{—ﬂH(t—tiﬁ)} local gradients of these_different c_hemicals. The aptions of
all agents are coupled indirectly via an effective field that
—(1—6) . expl— B_.(t—t- 1. 3 comprises two different chemlcal components. The agent ac-
( S=a e = Aoa(t-th )} @ tivities further depend on an internal parameigthat allows
. . . to describe a different “behavior.” Our model assumes that
Equation(3) means that the agent is not active, as long as gents with an internal sta@=0 do not contribute to the

0,=0, which means before it hits one of the nodes the first. ' : ;

: . ...~ field and are not affected by the field. They simply move like
time. After that eyent, the agent begins to produpe e'theérownian particles. Agentg with an inter);lal srtge:ﬂtl
component (1) if 6;=-+1, or component € 1) if 6 . Jiiite to the field by producing the chemical cuel(),

=—1. This activity, however, goes down with time, ex- ~ . . )
pressed in an exponential decrease of the production ratgv.h”e they are affected by the part of the field that is deter-

0o 0 L . mined by chemical { 1). On the other hand, agents with an
Here,s. ,, s_, are the initial production rates a.,, 5, internal stated,=—1 contribute to the field by producing

are the decay parameters for the producition (i)f the Chemic%lhemical (-1) and are affected by the part of the field,
components €1) or .(_.1)' _Respectlvelytn_J,, tp are the which is determined by component-(l). Moreover, if the
times, when the_ agemhits either a node with a positive or a agent hits one of the nodes, the internal state can be switched
negative poFentlaI. . . gue to Eq(2). Hence, the agent begins to produce a different
The spatlotemporal'congentratlon of th? (':hemllcals shal hemical while being affected by the opposite potential. Pre-
be described by ahemical f'e.ld h(r.t) consisting §|ther of cisely, at one time the agent doest respond to the gradient
component ¢-1) or (—1), which obeys the following equa- ¢ the same field component, which it contributes to via pro-
tion: ducing a chemical.
b0 As the result of this nonlinear feedback between the
dhy(r,t Brownian agents and the effective field generated by them,
at :_k(’h(’(r’t)+i§1 $i(0:.,1) 8,4, 0= 1i(1)). we can observe the formation of macroscopic structures
(4) shown in the following section.

=1 Vihyy(rt) si(=11). (6)

N

The first term describes the exponential decay of the existing|;. SIMULATION RESULTS OF NETWORK FORMATION
concentration due to spontaneous decomposition of the

chemical, wherek, is the decomposition rate. The second For the computer simulations, a triangular lattice with pe-
term denotes the production of the field by the agents. Herdiodic boundary conditions was used. Further, we have as-

84,9, Means the Kronecker delta used for discrete variable;imed that the parameters describing the production and de-

indicating that the agents only contribute to the field compo—Cay of the chemical are the same for both components,

nent that matches their internal parameter The 6 function 0 0

8(r—r,(t)) means that the agents contribute to the field only ~ S+1=5-1=S0, Ki1=K_1=kn, Bi1=p1=4. (7)

locally, at their current positiorr; . Diffusion of the chemi-

cal substances is not considered here. The agents start |n|t|aIIy at random pOSitiOﬂS and with the
The effectivefield, hé(r,t), is a specific function of the internal paramete#;(t=0)=0. For the evolution of the net-

different components of the field, E@). It should influence  work, we evaluate the surh(r,t) of the two field compo-

the movement of the agents according to the overdampedents generated by the agents. For the plots, however, we

Langevin Eq.(1) and dependent on their current internal pa-have to match these values witlgeay scaleof 256 values,

rameter,d;, as follows: which is defined as follows:
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(a) (b)

X X i

(c) (d)

C. 5

FIG. 2. Formation of links among four nodes. The plots show
the spatial concentratioo(r,t), Eq. (8) on a lattice of sizeA=30
X 30 for four different times{a) initial state,(b) after 100 simula-
tion steps(c) after 1000 simulation step&]) after 4500 simulation
steps. Parameterdl=450 agentssy=25 000, k,=0.01, 3=0.2,
k,=0.01.

AN,
f“\f\\{\ \

t=1.000 t—lO 000

0 255[1 | ( - ﬁ(nt)—ﬁmm(t)H
r,t)y= - 9= = ,
C( , 200 hma)&(t)_hmin(t)

ﬁ(r,t)zh+1(r,t)+h,1(r,t). (8) FIG. 3. Time series of the evolution of a network. The plots
show the spatial concentratiar{r,t), Eqg. (8) on a lattice of size
. ) A A=100%x100 for different timeg(in simulation steps The initial
This means that the highest actual valtg,,(t), aways  siate is shown in Fig. 1. Parametelé=5000 agentss, =10 000,
refers toblack (c=0), whereas the actual minimum value, \ =0.03, g=0.2.
mln(t) encodes white (c=255). Both extreme values
change in course of time, therefore each snapshot of the timend in higher fields along the connections. The self-
series presented has its own value mapping. assembling network is created very fast and remains stable in
As a first example, we show the evolution of the connecthe long run.
tions among four node&ig. 2). In the course of time agents The time series of Fig. 3 indicates that for the formation
that have by chance discovered a ndtigs way going over of the network atransient stageexists, during which new
into an active stalebegin to perform alirected motionbe-  nodes are discovered and new connections appear. After the
tween the different nodes. Eventually, a link appears whichiransient timet,, , however, the existing links are only stabi-
can be clearly distinguished from the surrounding. lized, with small possible fluctuations. In order to get an
Figure 2 would suggest that in the course of time allestimate of the transient time, we have evaluated the total
nodes with an opposite potential should be connected. Thidraction x,(t) =N,(t)/N of agents that currently have the
however, is not the case because the existing connectiomsternal parameteé. The result shown in Fig. 4 is based on
cause acreening effedhat forces the agents to move along the simulations of Fig. 3. It indicates that after 1500 simu-
existing connections rather than making up new ones. Thiation steps every agent has found at least one node by
screening effect becomes more obvious when the number @hance, thus changing its internal parameter eithertta)(
nodes is increased. Figure 3 shows the time evolution of ar to (—1). Further, after this time the share between these
network, which should connect 40 node$. Fig. 1). We see internal parameters is almost equally balanced, with slight
[29] that in the course of time the agents aggregate along thiguctuations arouna,= 0.5, dependent on the actual position
connections, which results in higher agent concentrationsf the agents.
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1.0 r
0.8 -
= 0.6
A
> o X
04 +
0.2
X
0.0 + 0 4
0 2000 4000 6000 8000 10000

t FIG. 5. Formation of links between a center_&1) and sur-
FIG. 4. Fractionx, of agents with the internal parametér  rounding nodesZ; =7). The plot shows the spatial concentration
vs time (in simulation steps (O), 6=0; (<), #=+1; (O), 6 c(r,t), Eq.(8) on a lattice of sizeA=50x 50 aftert=10 000 simu-
=—1. The values are obtained from the simulation, Fig. 3. Initial lation steps. Parameterdi=2000 agentss,=20 000, k,=0.02,
conditions:x,=1, x.,=0. B=0.2.

In Ref. [15], we have shown that the equations foft)  two nodes, a maximum distanté exists which agents are
for the ensemble average read explicitly able to connect. An approximation for this critical distance is
given in Ref.[16].
zZ,+z_ Eventually, we note that the network formation is not re-
xo(t)=exp{ —Dn A ’ ©) stricted to regular or symmetric distributions of nodes. Fig-
ure 5 shows a simulation where different nodes are con-
2,47 nected with a center.
1—exp{ -D, A t )

In Ref. [8] we have also discussed a different variant of
the model to demonstrate its flexibility in connecting addi-
tional nodes to the network, or disconnecting obsolete ones.
fe{—1,+1}. Further, in Ref[16] we have shown that the switching be-
havior between a connected and a disconneced state can be

In the asymptotic limit, the fraction, is determined by the Very short, which would allow the construction of a dynamic
appropriate number of nodes, which change the internal stafvitch.

of the agents int@. The transient timé,, can be estimated
by assuming that the difference betweeyft) and the sta-

tionary valuex;®' should be smaller than a certain value,

Xg(t) =

4
z.+z_

IV. ESTIMATION OF THE NETWORK CONNECTIVITY

A. Definition of connectivity
A

D,z

1

(10 In order to characterize a network, one of the most impor-
K

tant questions is whether two nodeand!| are connected or
not. In the model considered, a connection is defined in

For D,=1, we find for k=102 a transient time oft, terms of the chemical fielfh(r,t) produced by the agents.

=1150, and forx=10"2t,,= 1700, which is in good agree- During the first stage of the network formation, the agents
ment with the results of the computer simulations. After thathave randomly visited almost every lattice site before their
time, the assembled network should remain almost stable. motion turned into a bound motion between the nodes.

Patterns like the network shown are intrinsically deter-Therefore, the fie|d‘1(r,t) has a nonzero value for almost
mined by the history of their creation. It means that irrevers-eyvery r, which exponentially decays, but never vanishes.
ibility and early symmetry breaking play a considerable role,,.. .o in order talefine a connectiom terms offi(r,t), we
in the determination of the final structure. The location of thehave t(; introduce ¢hreshold value fy, , which is th’e r,nini-
different nodes acts more or less as a boundary condition faf, ..\ 21.a considered for a link. M(r)}e preciselycannec-

the structure formation which sets limits to the achievabletion between two nodelsandl should only exist if there is a
structures, but does not determine the way of connecting thﬁathaeA betweenk and | along which the actual value of

different nodes. bl
: — the fiel [ than the threshol I
Despite the fact that in Fig. 3 almost all nodes are con- e field is larger than the threshold value,

nected by at least one link, only some out of all possible A(at)>hy, for acA (11)
connections have been realized. In particular, only nearest ' ' '

neighbor nodes with opposite potentials are connected. This

is partly due to the screening effect that makes longer conSuch a definition does not necessarily assume that the con-
nections an unlikely event, but also indicates that, betweenection has to be direct link. Instead, it could be any path

t, = In
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which may also include other nodes, as long as the value
h(a,t) along the path is above the threshold. 80000
We want to define théocal connectivity kg as follows:
1 if k and | are connected by a patae A - 60000 |
>
Ex= along which h(a,t)>hy, < 40000 t
0 otherwise.
(12) 20000
We note that the connectivit,, does not change if two 0r ‘ ‘
nodesk andl| are connected by more than one path. 0 10 20
If we consider a number of nodes, then thglobal con- X
nectivity Ethat refers to the whole network is defined as
follows: FIG. 6. Stationary solutions fdr, 1(x), EQ.(19) (- - -), h_1(x)

(——), andh(x), Eq. (20) (—) vs spatial coordinate. h(x) is

measured in units dfsy] per length and time unit. =L ,,,/2, EQ.

(24). The thresholdh,,,, is defined as the minimum value bfr,t)
=T (13 in the stationary limit. For the parameters see Fig. 3.

z z

25 EW z

k=1 1>k
E=—— = :S
2 Z 1 the agent number, thé function in Eq.(15) can be replaced

k=1 i

by n/2=N/2A in the continuous limit.
Depending on the configuration of nodes, there may be nu- Further, we consider that the agents move alongxhe
merous different realizations for the connections, which recoordinate with a constant velocitwhich also matches with

sult in the same connectivity. the assumption ~0 of the overdamped Langevin equatipn

k

B. Estimation of the threshold value v=|v|= ¥ 0=x<L. (16)
In order to use the definition for the connectivity to evalu-

ate the simulated networks, we first have to define the threshrpis allows us to replacein the time dependent production
old valuehyy, . This should be theninimum valueof h(r,t)  rate,s;(6,t). With these simplified assumptions and the con-

along astable connectiometween two nodes. For our esti- ventions of Eq.(7), Eq. (15) reads for componemi=+1,
mations, we treat the connection between two nearest neigh- o

bor nodesk and| as aone-dimensionastructure, where is ah (1) n X
now the space coordinate, ahdhe linear distance between o~ Kahaa(X)+ 5spex —By- 17
the two nodesk and|. The node atx=0 should have a

positive potentialV=+1, while the node ak=L has a Integration of Eq(17) yields withh, ;(x,t=0)=0,
negative potentia/=—1,

Osx<L, V(0)=+1, V(L)=-1 (14 h+1(x,t)=g%exp[—ﬁg](l—exp{—kht}). (19
h

We assume that a stable connection exists if both field co

ponentsh,(x,1) have reached their stationary values, mEventuaIIy, fort—oo we find from Eq.(18) the stationary

solution
dhg(x,t)

T =Ko+ X s(0.0)8(x-%)=0. (19 s = ;%exp{ - gx]_ 19
h

Of course, we do not know how many agents are actually Ofrhe remaining field componettt_;(x’,t) should have the
the connection betweenandl. For our estimations we have same stationary solution as E(L9), with x’=L—x. The

to bear in mind thahy,, should determine thiewer imitof s 1ing total fieldA(x,t) reads in the stationary limitcf.
the possible values df, therefore it is justified to assume the Fig, ¢)

worst case, which means that the local number of agents at a

specific location is just given by thaverage agent density h(x)=h_,1(X)+h_y(L—x)

n=N/A, whereN is the total agent number amdl is the

surface size. Further, we found in the computer simulations nso B B

(cf. Fig. 4), that in the long-time limit the agents are equally 2k exp{ X +exp{ - ;(L—X)] :
distributed between the two internal statess {+1,—1}. (20)
Hence, we assume that on any location along the connection

there aren,=n/2 agents in stat@. Using this lower limit for O=x=L.
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The thresholdch,,, should be defined as the minimum of 1ol
h(x), which yields forL/2. As the result, we find ’
0.8
(L} Nsg BL
Mo =iz Kk_heXp{ - ;E]- D _ o8|
Here, the threshold value is a function of the mean agent Wooal
densityn, the parametersy, k,, and B, and the distance
between the two nodek, However, due to the decay of the 02
field (ky) and the decreasing production rate with ting) (
the agents are only able to link nodes that are at a distance 0.0
closer than a critical distande*, i.e., Eq.(21) makes sense 10’ 107 10° 10° 10°
only for L<<L*. t
In order to get an estimation fdr*, we assume that a
minimum production rates,;, exists, which is in the given FIG. 7. Network connectivitf Eq. (13) vs timet (in simulation

model the smallest possible amount of chemical released bsteps, calculated from the series of Fig. 3.
the ageninaturally, it could be a molecule, §is measured ) ) o _
in molecule numbejsWith ty being the time when the agent proximatelyh,,,~2sy. We note again that this is an estimate

hits the node, we get from that might give a rather high value because of the assumed
worst case conditions. On the other hand, it ensures that val-
Smin= So exp{ — B(t—to)} (22)  ues forh(a,t) above the thresholceally represent astable
connectiona.

the maximum time ,,,, after which the production isegli-
gible, C. Results of computer simulations

t =£In So 29 After these theoretical considerations, we are now able to
max- g il calculate the connectivit, Eq. (13), for the network simu-

_ _lated in Fig. 3. Figure 7 shows the increase of the connectiv-
We can now discuss the case that the agent moves straigi§ in the course of time. In agreement with the visible evo-

with a constant velocity, without changing its direction. Then|ytion of the network presented in Fig. 3, the following three
the maximum distance crossed before the contribution to thgifferent stages can be clearly distinguished.

field is negligible would be (1) An initial period ¢<10?), where no connections yet
exist.
v (s . .
L an=0 tmax:_ln[ 0_ } (24) (2) A transientperiod (16<t<10%, where the network
B Smin establishes.

(3) A saturationperiod (> 10%, where almost all nodes

On the contrary, if we assume that the agent moves like g, connected, and only small fluctuations in the connectivity

random walker, the average distance reached afianula-

; ; ) X occur.
tion _steps, IS given by the mean displacemeniR Figure 7 results from the single realization of the network
= v2d Dyt, which yields ford=2, shown in Fig. 3, in the average we find certain fluctuations in
) S the cqnnectivity due to stochastic influenc'es that _affect t_he
La= /2 Dtmax= _”|n{ 0 ] (25)  formation of the network during the transient period. This

B Smin leads us to the question: on what parameters the connectivity

Th | . dist that b ted b of the network depends? There are of course the parameters
€ real maximum distance that can be connected by Or]gffecting the production and decay of the two different
agent in the considered model is of course between the

L9 . . emical cuessy /Ky, B, and thus the positional information
limits. We have found16] that Lma42 is a reasonable esti- available to the agents. Another important parameter is the

mate forL*, — o . .
average agent density=N/A. If it is too low, the links will
2D, L max not be established properly, either because not all nodes have
—Lpax<L =~ > <L max- (26)  been detected during the transient period or because there are

not enough agents to maintain the links sufficiently. Figure 8

Using this approximation, we find with E1) and Eq.(24) shows the average connectivitlf) dependent on the density

eventually the estimate for the threshold, of agentsh.
Here, we clearly see that below a critical density the con-
N So [ Smin 1/a nectivity is almost zero because not enough agents are avail-
hthr:K kn\ So (27 able to establish the connections. On the other hand, above a

certain density the connectivity reaches a saturation value
Provided the set of parameters used for the simulations, wihat could be also below 1, as Fig. 8 shows. Hence, at this
find for the threshold the value,,,=1.7x 10*, which is ap-  point an increase of the number of agents does not necessar-
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tween different nodes, along which the Brownian agents per-

10 form a directed motion—in this way reinforcing and “main-
08 - taining” the links.
Different from acircuitry for instance, for which the links
A 06 between the nodes are determined toa-downapproach of
% 04 | hierarchical planning, the connections here are created by the
) agentsbottom up in a process of self-organization. As the
02+ computer simulations have shown, the model turns out to be
very flexible regarding the geometry of the nodes to be con-
0.0 nected. Further, the networks created this way are raither
0.0 0:2 0:4 016 0:8 1.0 bust against disturbances. If, for example, a _particular link
i breaks down, the agents would be abledpair it by rees-
tablishing the field, or by creating a new one.
FIG. 8. Network connectivit{ E) Eq. (13), averaged over five The basic feedback mechanism in our model is given by
simulations vs mean density of agents(number of agents per the agent's generation d¢fwo) different kinds of chemical
lattice size,N/A). For further parameters see Fig. 3. information and the agent’'s response to gradients of these

chemicals dependent on their internal state. This is also

ily result in the establishment of more links. This is causedknOWn aschemotaxisi.e., the response tégradients of
by the screening effecalready mentioned in Sec. Ill, which chemical substances and is widely found in different levels
eventually concentrates all agents to move along the estal®f biological organization. However, different from other
lished links. self-wiring modeld4,5] we have not assumed that these sub-
A third important impact on the establishment of the net-Stances due to their diffusion may have a long-range effect
work results from parameter relation between and &;  ©N the moving agents, or may generate attraciive repul-
which influence the agent’s motion according to EY. If SV forces. In our model, the chemical information acts only
both the response to the field;, and the sensitivityw; locally. It is stored in an effective field that is sometimes also
«1/e; are low, the agent nearly behaves as a random particlél€noted as aelf-consistent fieldoecause it is generated by
On the other hand, a strong response or a high sensitivit{ agents and at the same time also influences their further
may result in a decrease of stochastic influences, and t havior. From a more general perspective, the effective field
agent pays more attention to the effective field that guides it8!@ys the role of a communication medium among the
motion. This in turn increases the screening effect and ma9ents, i.e., it stores informatidexternal to the agentfor a
prevent the agent from discovering unknown nodes, thus wEertain time(determined by the decay ralg) and allows
can expect an optimal range of these parameters for an effAcC€SS to it under certain conditions—for instance, in the
cient network formation. This has been investigated in mor&urrent model an agent can only access information that is at

detail in a subsequent pagdr5). its current position and is labeled differently from the value
of the agent’s internal parameter. But the agents do not just
V. CONCLUSIONS respond to the information provided in a purely reactive

manner, they also actively change it dependent on their in-

In this paper, we have proposed an agent-based model thegrnal parameter.
shows theself-assemblingf networklike structures between The Brownian agent concept has proven its utility in a
arbitrary nodes. Different from network models that startnumber of applications whergositive and negatiyelocal
with the assumtion of a known set of nodes to be linked in deedback processes play a considerable role, but an internal
straightforward manner, we have addressed in our model thevolutionof the agents can be neglectgt?]. The concept
question of how to connect a set of nodgghoutusing prior  does not deny its inspiration from statistical physics, using,
information about their spatial locations or preexisting long-e.g., generalized Langevin equations for the agents or
range attraction forces. This would need to solve two probfeaction-diffusion equations for the effective field. Moreover,
lems simultaneously{i) the detection of the appropriate it purposefully stretches these analogies, in order to apply
nodes, and(ii) the establishment of onéor many stable  methods from statistical physics to derive pieces for a formal
links between them. approach tanultiagent system@VAS). This should also in-

As we have noted in the Introduction, this is a scientificclude the derivation of a macroscopic dynamics of the MAS
problem of relevance in different areas, including the emerbased on the agentshicroscopig¢ dynamics, to allow some
gence of neural connections. In the latter case, positiongiredictions of the collective behavior and the derivation of
information in terms of chemical gradients plays an impor-critical parameters, etc.
tant role in guiding the neural axons to their destinations. In  On the first glimpse, agent-based approaches seem to be
our model, we have assumed that the positional informatioutside the realms of physics. Therefore, at the end we would
about the existence of the nodes does not preexist, but lke to comment on this. First of all, “agent” or particle-
generated “on the fly” by means of Brownian agents while based models are also useful in physics if continuous ap-
they are moving on the surface. Due to the nonlinear feedproximations are not appropriate, for example, in cases
back between the detected positional information and thahere only small particle numbers govern the prodess.,
creation of new links, we find the emergence of links be-in dielectrical breakdown or filamentary pattern formajion
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Here deterministic approaches or mean-field equations aregent model, other agent-based approaches have been devel-
not sufficient to describe the behavior of the system, becaussped based on physical principles, which focus on particular
the influence of history, i.e., stochastic fluctuations, earlyaspects of the complex agent behavior. We just mention here
symmetry breaks, path dependence, etc., play a considerakjetive walker model$6,19—22, where a potential can be
role—which can be appropriately captured in particle-basegbcally changed by the walker, @ctive Brownian particles
models. Moreover, these models also provide a very efficierttl4,1@ that deal also with the energetic aspects of active
way to simulate structure formation processes by solving @notion. With respect to specific biological phenomena, there
large number of coupled “particle” equationtsuch as s the communicating walker modalsed in the study of
Langevin equationsinstead of integrating a complicated set complex patterning of bacterial coloni€23], or the bions
of coupled partial differential equatiof$7,18. modelused in the study of amebae aggregafia4], or the

In many interdisciplinary applications physics nowadaysmany models of self-driven particles to describe swarming
deals with, for example, in biological physics or econophystehavior25—28. They jointly demonstrate that agent-based

ics, the basic system entities do not just respond to interagnodels can indeed profit from the methodology and the tools
tion forces, but also perform certain types of activities, suchyerived in statistical physics.

as active motion or changes of the “environment” and fur-
ther have internal degrees of freedom that allow them to act
differently. Therefore, the “physical” particle-based ap-
proach has been extended towardsgant-based approach
where the agents already have an intermediate complexity to The authors would like to thank L. Schimansky-Geier
allow for certain nontrivial actions or responses. In the(Berlin) for discussions. This manuscript was completed dur-
model discussed in this paper, the generation of two differening a stay at the Centro de Ciencias Matemati€@&M) of
chemical cues and the complex response to them are just twbe Universidade da Madeir@ortuga). F.S. would like to
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